

Combinatorial Optimization at Work 2020

Traffic Optimization <u>Part I: Paths & Lagrange Relaxation</u> Part II: Vehicles & Crews Part III: Pollsters & Vehicles

Zuse Institute Berlin, 22.09.2020

Traffic of the Future

- Needs data and communication to assess and control system status
- Needs mathematics to find smart solutions

Planning Problems in Public Transit

. Sabancı . Universitesi

Vehicle Rotation Planning is a Crucial Part of the Production **Planning Process**

IVU.suite for Buses and Rail Transport

Workflow Oriented and Integrated Optimization: How fast business processes can follow IT?

Slide of LSB

Şahim izatiafii or Optithizat Grew CO@W 2020

Planning Problems in Public Transit

. Sabancı . Universitesi

The Shortest Path Problem

. Sabancı . Üniversitesi

1 Def. (Single Source Shortest (st-)Path Problem (ShPP)): Let G = (V, E, c) be a (un)directed graph on n nodes with edge weights $c \in \mathbb{R}^{E}_{\geq 0}$, $s, t \in V$ two nodes, $P^{D}_{st} = P_{st}$ the set of all st-paths in D.

$\min c(P)$, $P \in P_{st}$ shortet (st)-path problem (ShPP)

- a) ShPP <u>conservative</u> : $\Leftrightarrow c(C) \ge 0 \forall$ (di)cycles $C \subseteq E$
- b) ShPP <u>metric</u> : $\Leftrightarrow c_{uv} + c_{vw} \ge c_{uw} \quad \forall uv, vw, uw \in E$ (Δ -inequality)
- c) ShPP <u>Euclidean</u> : $\Leftrightarrow c_{uv} = ||u v||_2 \quad \forall uv \in E \subseteq \mathbb{R}^2$
- **2 Obs. (Simplicity):** A conservative ShPP has a simple optimal solution (no node repetitions).

simple/non-simple path

Şahin | Traffic Optimization I | CO@W 2020

3 Alg. (Dijkstra's Algorithm, Dijkstra [1959]): **Input:** $G = (V, E, c), s, t \in V, c \in \mathbb{R}^{E}_{>0}$ **Output:** $P \in \operatorname{Argmin} c(P)$ $P \in P_{st}$ **Data Structures:** $d \in (\mathbb{R} \cup \{+\infty\})^V$, pred $\in (V \cup \{\text{nil}\})^V$, $R \subseteq V \lt$ reached nodes $d[v] \leftarrow +\infty$, pred $v] \leftarrow nil \forall v \in V, d_s \leftarrow 0, R \leftarrow \{s\}$ while $R \neq \emptyset$ do 2. $O(n \times \log n)$ $u \leftarrow \operatorname{argmin}_{v \in R} d[v], R \leftarrow R \setminus \{u\}$ 3. 4. forall $uv \in E$ do if $d[u] + c_{uv} < d[v]$ then $d[v] \leftarrow d[u] + c_{uv}, R \leftarrow R \cup \{v\}, \operatorname{pred}[v] \leftarrow u$ 5. (amortized) 6. 7. endif

- 8. endwhile
- **9.** output $(t, pred[t], pred^2[t], ..., s or nil)$

4 Prop. (Correctness and Run Time of Dijkstra's Algorithm): Alg. 3 is correct and runs in $O(n \log n + m)$.

Şahin | Traffic Optimization I | CO@W 2020

Dijkstra's Algorithm

. Sabancı . Universitesi

5 Def. (IP Formulation of the ShPP): Let D = (V, A, c) be a **directed** graph, with arc weights $c \in \mathbb{R}^{A}_{>0}$, $s, t \in V$ two nodes. (ShPP) min $c^T x$ objective $x(\delta^+(v)) - x(\delta^-(v)) = 0 \quad \forall v \neq s, t \quad \text{flow conservation}$ (i) $x(\delta^+(s)) = 1$ (ii) flow constraint (iii) $0 \le x \le 1$ bounds (iv)*x* integer integrality a) $P^{ShPP} \coloneqq \operatorname{conv} \{ \chi_P : P \in P_{St} \}$ <u>st-path polytope</u> b) $P_I^{ShPP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP) (i) - (iv)\}$ ShPP polytope c) $P_{LP}^{ShPP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP)(i) - (iii)\}$ ShPP LP-relaxation **6 Prop. (Path Polytopes):** $P^{ShPP} = P_I^{ShPP}$ is in general not true, but $P_{I}^{ShPP} = P_{IP}^{ShPP}$; Argmin $c^T x$ contains a path for conservative c. **Proof:** $x \in P_{IP}^{ShPP}$ P_{I}^{ShPP} allows subtours, P_{IP}^{ShPP} describes a flow.

Dijkstra's Algorithm – A* – Superoptimal Wind Universites

Flight Planning

Taipei – New York Boeing B777-300ER, 25 April 2017, great circle distance 12.565 km

- The green trajectory takes better advantage of the strong jet stream (~300 km/h).
- It is worth to take a long detour.
- Besides saving fuel and time, the new route saves overflight fees by avoiding the expensive airspaces of Canada and Japan.

	using old heuristic search space reduction	using new dynamic search space reduction	GAIN
distance flown (km)	13.385	14.635	-1250
flight time (hours)	14:40	13:55	0:45
fuel burn (kg)	95.524	89.859	5665 = 17,8 t CO ₂
overflight fees (USD)	2291	1139	1152
total cost (USD)*	76.453	71.118	5335

* based on: fuel price 500 USD / ton, flight time costs: 1400 USD / hour

Min Cost Track

5 Def. (IP Formulation of the Constrained ShPP (CSP)): Let D = (V, A, c) be a **directed** graph, with arc weights $c \in \mathbb{R}^{A}_{\geq 0}$, $s, t \in V$ two nodes, $Ax \leq b$ some linear constraints.

min $c^T x$ (CSP) objective $x(\delta^+(v)) - x(\delta^-(v)) = 0 \quad \forall v \neq s, t \quad \text{flow conservation}$ (i) $x(\delta^+(s)) = 1$ (ii) flow constraint (iii) $0 \leq x \leq 1$ bounds (iv) $Ax \leq b$ path constraints (v)x integer integrality

a) $P^{CSP} \coloneqq \operatorname{conv} \{\chi_P : P \in P_{st}, A\chi_P \le b\}$ <u>const. st-path polytope</u> b) $P_I^{CSP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP) (i) - (v)\}$ <u>CSP polytope</u> c) $P_{LP}^{CSP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP)(i) - (iv)\}$ <u>CSP LP-relaxation</u> 6 **Obs. (CSP):** $P^{CShP} \subseteq P_I^{CSP} \subseteq P_{LP}^{CSP}$; equality does in general not hold. The CSP is NP-hard. **5 Def. (IP Formulation of the Constrained ShPP (CSP)):** Let D = (V, A, c) be a **directed** graph, with arc weights $c \in \mathbb{R}^{A}_{\geq 0}$, $s, t \in V$ two nodes, $Ax \leq b$ some linear constraints.

min $c^T x$ (CSP) objective (i) $x(\delta^+(v)) - x(\delta^-(v)) = 0 \quad \forall v \neq s, t$ flow conservation $x(\delta^+(s)) = 1$ (ii) flow constraint (iii) $0 \le x \le 1$ bounds (iv) $Ax \leq b$ path constraints (v)x integer integrality **6 Obs. (CSP):** $P^{CShP} \subseteq P_{I}^{CSP} \subseteq P_{I,P}^{CSP}$; equality does in general not

hold. The CSP is NP-hard. **Proof:** Solves knapsack problem $\min c^T x$, $a^T x \le b, x \in \{0,1\}^n$: $c_{uv} = 0, a_{uv} = 0$

5 Def. (IP Formulation of the Constrained ShPP (CSP)): Let D = (V, A, c) be a **directed** graph, with arc weights $c \in \mathbb{R}^{A}_{\geq 0}$, $s, t \in V$ two nodes, $Ax \leq b$ some linear constraints.

 $\min c^T x$ (CSP) objective $x(\delta^+(v)) - x(\delta^-(v)) = 0 \quad \forall v \neq s, t \quad \text{flow conservation}$ (i) $x(\delta^+(s)) = 1$ (ii) flow constraint (iii) $0 \le x \le 1$ bounds (iv) $Ax \leq b$ path constraints (v)x integer integrality

a) $P^{CSP} \coloneqq \operatorname{conv} \{\chi_P : P \in P_{st}, A\chi_P \le b\}$ <u>const. st-path polytope</u> b) $P_I^{CSP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP) (i) - (v)\}$ <u>CSP polytope</u> c) $P_{LP}^{CSP} \coloneqq \operatorname{conv} \{x \in \mathbb{R}^E : (ShPP)(i) - (iv)\}$ <u>CSP LP-relaxation</u> 6 Obs. (CSP): $P^{CShP} \subseteq P_I^{CSP} \subseteq P_{LP}^{CSP}$; equality does in general not hold. The CSP is NP-hard, even for acyclic digraphs and $c \ge 0$. (Acyclic) Constrained Shortest Path Problem

8 Def. (Acyclic Constrained Shortest Path Problem (ACSP)): A CSP on a acyclic digraph is acylic.

9 Obs. (Topological Sorting): The nodes of an acyclic digraph D = (V, A) can be topologically sorted s.t. $uv \in A \implies u < v$.

 $1 < \cdots < 9$ sorts V = [9] topologically.

Şahin | Traffic Optimization I | CO@W 2020

Cor. (Pseudopolynomial Solution of the ACSP): The ACSP can be solved in pseudopolynomial time of $O(\prod_i |A_i|_1 \max \delta^+(v) + m)$, and if $A, b \ge 0$, in $O(\prod |b_j| \max \delta^+(v) + m)$.

Proof: Sort *D* topologically in linear time of O(m), then fill the dynamic programming table in $O(\prod_i |A_{i}|_1 \max \delta^+(v))$.

Sabanci

iversites

3.1 Def. (Lagrange(an) Relaxation): Let $c \in \mathbb{R}^n$, $D \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$, $X \subseteq \mathbb{R}^n$ closed, and consider the optimization problem

(P) min
$$c^T x$$

 $Dx = d$ complicated/ing
 $x \in X$ tractable.

- Let $\lambda \in \mathbb{R}^m$ a vector of <u>Lagrange multipliers</u>.
- a) $L_P^{Dx=d}(\lambda) = \min_{x \in X} c^T x \lambda^T (Dx d) \in \mathbb{R} \cup \{\pm \infty\}$ Lagrange relaxation (of (P)) (w.r.t. Dx = d) at λ
- b) $L_P^{Dx=d}: \mathbb{R}^m \to \mathbb{R} \cup \{\pm \infty\}, \ \lambda \mapsto \min_{x \in X} c^T x \lambda^T (Dx d)$ <u>Lagrange function (of (P)) (w.r.t. Dx = d)</u>

Notation: If (P), Dx = d are clear, we write L instead of $L_P^{Dx=d}$ etc.

. Sabancı . Universitesi

3.2 Thm. (Properties of the Lagrange Relaxation, Geoffrion [1974]) Let (P) as in Def. 3.1 and

$$v(P) = \min c^{T}x, Dx = d, x \in X \in \mathbb{R} \cup \{\pm \infty\}.$$
a)
$$\sup_{\lambda} L(\lambda) \leq v(P)$$
b) Let $X = \{Ax \geq b\}, X \cap \{Dx = d\} \neq \emptyset$ for $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{n}$. Then
$$\max_{\lambda} L_{P}^{Dx=d}(\lambda) = v(P)$$
c) Let $X = \{Ax \geq b\} \cap \mathbb{Z}^{n}, X \cap \{Dx = d\} \neq \emptyset$ for $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{n}$. Then
$$\min_{Dx=d, Ax \geq b} c^{T}x \leq \max_{\lambda} L_{P}^{Dx=d}(\lambda) \leq v(P)$$
d) Let X be a $\{ \begin{array}{c} \text{finite set} \\ \text{polytope} \end{array} \}, X \cap \{Dx = d\} \neq \emptyset.$
Then L is i) concave, ii) piecewise affine, iii) bounded from

above.

. Sabancı . Universitesi

3.2 Thm. (Properties of the Lagrange Relaxation, Geoffrion [1974]) Let (P) as in Def. 3.1 and

 $\nu(P) = \min c^T x, Dx = d, x \in X \in \mathbb{R} \cup \{\pm \infty\}.$

a)
$$\sup_{\lambda} L(\lambda) \leq v(P)$$

Proof:

a)
$$L(\lambda) = \min_{x \in X} (c^T - \lambda^T D) x + \lambda^T d \le \min_{\substack{x \in X \\ Dx = d}} c^T x - \lambda^T (\underbrace{Dx - d}_{= 0}) = \nu(P)$$

3.2 Thm. (Properties of the Lagrange Relaxation, Geoffrion [1974]) b) Let $X = \{Ax \ge b\}, X \cap \{Dx = d\} \ne \emptyset$ for $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{n}$. $\max_{\lambda} L(\lambda) = \nu(P).$

Proof: b)

 $\nu(P) = \min c^T x = \max \lambda^T d + \mu^T b$ Dx = d Duality $\lambda^T D + \mu^T A = c^T$ $Ax \ge b$ Thm. $\mu \geq 0$ $= \max \lambda^T d +$ max $\mu^T b$ $\mu \qquad \mu^T A = c^T - \lambda^T D$ λ $\mu \ge 0$ $\max \lambda^T d + \min (c^T - \lambda^T D) x$ = $Ax \geq b$ DT λ

3.2 Thm. (Properties of the Lagrange Relaxation, Geoffrion [1974]) Let (P) as in Def. 3.1 and

$$\nu(P) = \min c^T x, \ Dx = d, \ x \in X \quad \in \mathbb{R} \cup \{\pm \infty\}.$$

c) Let $X = \{Ax \ge b\} \cap \mathbb{Z}^n, X \cap \{Dx = d\} \neq \emptyset$ for $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^n$.

Then
$$\min_{Dx=d,Ax\geq b} c^T x \leq \max_{\lambda} L_P^{Dx=d}(\lambda) \leq v(P)$$

Proof:

c) Follows from a) and b).

. Sabancı . Universitesi

3.2 Thm. (Properties of the Lagrange Relaxation, Geoffrion [1974]) Let (P) as in Def. 3.1 and

$$\nu(P) = \min c^T x, \ Dx = d, \ x \in X \quad \in \mathbb{R} \cup \{\pm \infty\}.$$

d) Let X be a ${\text{finite set} \atop \text{polytope}}$, $X \cap {Dx = d} \neq \emptyset$. Then L is i) concave, ii) piecewise affine, iii) bounded from above.

Proof:

Lagrange Relaxation (Inequality Version)

. Sabancı . Üniversitesi

3.3 Cor. (Lagrange(an) Relaxation): Let $c \in \mathbb{R}^n$, $D \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$, $X \subseteq \mathbb{R}^n$ closed, and consider the optimization problem

(P) min
$$c^T x$$

 $Dx \ge d$ complicated/ing (standard form)
 $x \in X$ tractable.

Let $\lambda \in \mathbb{R}^{m}_{\geq 0}$ a vector of <u>Lagrange multipliers</u>.

a)
$$L_P^{Dx=d}(\lambda) = \min_{x \in X} (c^T - \lambda^T D) x + \lambda^T d \in \mathbb{R} \cup \{\pm \infty\}$$

Lagrange relaxation (of (P)) (w.r.t. $Dx \ge d$) at λ

b)
$$L_P^{Dx=d}: \mathbb{R}^m_{\geq 0} \to \mathbb{R} \cup \{\pm \infty\}, \ \lambda \mapsto \min_{\substack{x \in X}} (c^T - \lambda^T D)x + \lambda^T d$$

Lagrange function (of (P)) (w.r.t. $Dx \geq d$)
Proof: Ex. \Box

3.4 Def. (Subgradient, Subdifferential): Let $f: \mathbb{R}^n \to \mathbb{R}$ be concave, $\lambda_0 \in \mathbb{R}^n$.

- a) $u \in \mathbb{R}^{n}$: $f(\lambda) \leq f(\lambda_{0}) + u^{T}(\lambda \lambda_{0}) \quad \forall \lambda \in \mathbb{R}^{n}$ <u>*u* subgradient of f at λ_{0} </u>
- b) $\partial f(\lambda_0) \coloneqq \{u \in \mathbb{R}^n : u \text{ subgradient of } f \text{ at } \lambda_0\}$ subdifferential of f at λ_0

3.5 Prop. (Sufficient Optimality Condition): Let $f: \mathbb{R}^n \to \mathbb{R}$ be concave, $\lambda_0 \in \mathbb{R}^m$. Then $0 \in \partial f(\lambda_0) \Longrightarrow f(\lambda_0) = \max f$. **Proof:** Ex. \Box

3.6 Prop. (Diff'able Case): Let $f: \mathbb{R}^n \to \mathbb{R}$ be concave and diff'able at $\lambda_0 \in \mathbb{R}^n$. Then $\partial f(\lambda_0) \coloneqq \{f'(\lambda_0)\}$. **Proof:** Ex. \Box

Sabancı

. Sabancı . Universitesı

3.7 Prop. (Polyhedral Case): Let f = L be a Lagrange function (as in Def. 3.1) and let $X = \begin{cases} x_1, \dots, x_k \\ \operatorname{conv} \{x_1, \dots, x_k\} \end{cases}$. Then $\partial f(\lambda_0) = \operatorname{conv} \{-(Dx_i - d): x_i \in \operatorname{Argmin} f(\lambda_0)\}.$

Let $\lambda_0 \in \mathbb{R}^n$, $X(\lambda_0) \coloneqq \operatorname{Argmin} f(\lambda_0)$, $u_i \coloneqq -(Dx_i - d)$, i = 1, ..., k. " \supseteq ": $\forall x_j \in X(\lambda_0)$ holds

 $= f(\lambda_0).$

$$f(\lambda_0) + u_j^T (\lambda - \lambda_0) = \underbrace{c^T x_j - \lambda_{\Theta}^T (Dx_j - d)}_{= f(\lambda_0)} - \underbrace{(Dx_j - d)}_{= u_j^T} (\lambda - \lambda_{\Theta})$$
$$= f(\lambda_0) = u_j^T$$
$$= c^T x_j - \lambda^T (Dx_j - d)$$
$$\geq \min_{i=1} c^T x_i - \lambda^T (Dx_i - d)$$

3.7 Prop. (Polyhedral Case): Let f = L be a Lagrange function (as in Def. 3.1) and let $X = \begin{cases} x_1, \dots, x_k \\ \operatorname{conv} \{x_1, \dots, x_k\} \end{cases}$. Then $\partial f(\lambda_0) = \operatorname{conv} \{-(Dx_i - d): x_i \in \operatorname{Argmin} f(\lambda_0)\}.$

Let
$$\lambda_0 \in \mathbb{R}^n$$
, $X(\lambda_0) \coloneqq \operatorname{Argmin} f(\lambda_0)$, $u_i \coloneqq -(Dx_i - d)$, $i = 1, ..., k$.
" \subseteq ": $\min_{x_i \notin X(\lambda_0)} c^T x_i - \lambda_0^T (Dx_i - d) > f(\lambda_0)$
 $\Rightarrow \exists \epsilon > 0$: $\min_{x_i \notin X(\lambda_0)} c^T x_i - \lambda^T (Dx_i - d) > f(\lambda) \quad \forall \lambda \in U_{\epsilon}(\lambda_0)$
 $\Rightarrow X(\lambda) \subseteq X(\lambda_0) \quad \forall \lambda \in U_{\epsilon}(\lambda_0).$

3.7 Prop. (Polyhedral Case): Let f = L be a Lagrange function (as in Def. 3.1) and let $X = \begin{cases} x_1, ..., x_k \\ conv \{x_1, ..., x_k\} \end{cases}$. Then $= \operatorname{conv} \{-(Dx_i - d) \cdot x_i \in d\}$

$$\partial f(\lambda_0) = \operatorname{conv} \{-(Dx_i - d): x_i \in \operatorname{Argmin} f(\lambda_0)\}$$

Proof:

Let
$$\lambda_0 \in \mathbb{R}^n$$
, $X(\lambda_0) \coloneqq \operatorname{Argmin} f(\lambda_0)$, $u_i \coloneqq -(Dx_i - d)$, $i = 1, ..., k$.
" \subseteq ": $\exists \epsilon > 0: X(\lambda) \subseteq X(\lambda_0) \forall \lambda \in U_{\epsilon}(\lambda_0)$. Let $u \notin \operatorname{conv} \{ u_i: x_i \in X(\lambda_0) \}$
 $\Rightarrow \exists \pi \in \mathbb{R}^m: \pi^T u < \pi^T u_i \quad \forall x_i \in X(\lambda_0) \text{ (by sep. hyperplane Thm.)}$
 $\Rightarrow f(\lambda_0 + \epsilon \pi) \ge \min_{\substack{x_i \in X(\lambda_0) \\ = \lambda}} c^T x_i - (\lambda_0 + \epsilon \pi)^T (Dx_i - d)$
 $\equiv X(\lambda_0 + \epsilon \pi) = -\lambda_0^T (Dx_i - d) + \epsilon \pi^T u_i$
 $= f(\lambda_0) + \min_{\substack{x_i \in X(\lambda_0) \\ = \lambda}} \epsilon \pi^T u_i$
 $\geq f(\lambda_0) + \epsilon \pi^T u$
 $= f(\lambda_0) + u^T (\lambda_0 + \epsilon \pi - \lambda_0) \checkmark \Box$

3.8 Alg. (Subgradient Algorithm):

<u>Inp</u>	out: $f: \mathbb{R}^m \to \mathbb{R}$	concave (by func. & subgrad. oracle)
	$\lambda_0 \in \mathbb{R}^m$	starting point
	$(\alpha_k)_{k=1}^{\infty} > 0^*$	sequence of step lengths
<u>Out</u>	tput: $(\lambda_k)_{k=1}^{\infty} \in (\mathbb{R}^m)^*$	iterates
Dat	ta St.: k ∈ ℕ ₀	iteration counter
	$(u_k)_{k=1}^{\infty} \in (\mathbb{R}^m)^*$	sequence of subgradients
1.	$k \leftarrow 0, \ u_0 \xleftarrow{\in} \partial f(\lambda_0)$	
2.	$\lambda_{k+1} \leftarrow \lambda_k + \alpha_k u_k, \ u_{k+1}$	$\underset{\in}{\leftarrow} \partial f(\lambda_{k+1}), k \leftarrow k+1$
3.	goto 2	λ_k

. Sabancı . Üniversitesi

 λ^*

 u_k

 λ_k

3.9 Thm. (Convergence of the Subgradient Algorithm): Let $f: \mathbb{R}^m \to \mathbb{R}$ be concave and

a) $f^* = \max f < \infty$ (in particular, the maximum exists)

- b) $||u||_2 \leq L \quad \forall u \in \partial f \text{ for some } L \in \mathbb{R}$
- c) $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$, $\sum_{k=0}^{\infty} \alpha_k \to \infty$.

Then $\lim_{k \to \infty} \max_{j=1,...,k} f(\lambda_j) = f^*.$

Proof: Let $\lambda^* \in \operatorname{Argmin} f$. Then $||\lambda_{k+1} - \lambda^*||_2^2 = ||\lambda_k + \alpha_k u_k - \lambda^*||_2^2 \leq f(\lambda_k) - f^*$ $= ||\lambda_k - \lambda^*||_2^2 + 2\alpha_k u_k(\lambda_k - \lambda^*) + \alpha_k^2 ||u_k||_2^2$ $\leq ||\lambda_0 - \lambda^*||_2^2 - \sum_{j=1}^k 2\alpha_k (f^* - f(\lambda_j)) + \sum_{j=1}^k \alpha_k^2 ||u_k||_2^2$

Convergence of the Subgradient Algorithm

3.9 Thm. (Convergence of the Subgradient Algorithm): Let $f: \mathbb{R}^m \to \mathbb{R}$ be concave s.t. a) $f^* = \max f < \infty$ b) $\exists L \in \mathbb{R}: ||u||_2 \leq L$ $\forall u \in \partial f \ c) \sum_{k=0}^{\infty} \alpha_k^2 < \infty$, $\sum_{k=0}^{\infty} \alpha_k \to \infty$. Then $\max_{j=1,\dots,k} f(\lambda_j) \xrightarrow{k \to \infty} f^*$.

Proof: Let $\lambda^* \in \operatorname{Argmin} f$. Then

$$\begin{aligned} \left| |\lambda_{k+1} - \lambda^*| \right|_2^2 &= \left| |\lambda_k + \alpha_k u_k - \lambda^*| \right|_2^2 &\leq f(\lambda_k) - f^* \\ &= \left| |\lambda_k - \lambda^*| \right|_2^2 + 2\alpha_k u_k (\lambda_k - \lambda^*) + \alpha_k^2 ||u_k||_2^2 \\ &\leq \left| |\lambda_0 - \lambda^*| \right|_2^2 - \sum_{j=1}^k 2\alpha_j (f^* - f(\lambda_j)) + \sum_{j=1}^k \alpha_k^2 ||u_k||_2^2 \\ &\Rightarrow \left| |\lambda_{k+1} - \lambda^*| \right|_2^2 + \sum_{j=1}^k 2\alpha_k (f^* - f(\lambda_j)) \leq \left| |\lambda_0 - \lambda^*| \right|_2^2 + \sum_{j=1}^k \alpha_k^2 ||u_k||_2^2 \\ &\Rightarrow \frac{||\lambda_{k+1} - \lambda^*||_2^2}{2} + \sum_{j=1}^k 2\alpha_j (f^* - f(\lambda_j)) \leq \left| |\lambda_0 - \lambda^*| \right|_2^2 + \sum_{j=1}^k \alpha_k^2 ||u_k||_2^2 \\ &\Rightarrow f^* - \max_{j=1,\dots,k} f(\lambda_j) \leq \left(\left| |\lambda_0 - \lambda^*| \right|_2^2 + \sum_{j=1}^k \alpha_k^2 ||u_k| \right|_2^2 \right) / 2\sum_{j=1}^k \alpha_j \to 0. \ \Box \end{aligned}$$

Lagrange Relaxation

3.10 Ex. (Lagrange Relaxation)

p	nodes	c (p)	w (p)	w(p) - 6	$c(p) - \lambda(w(p) - 6)$	
p_1	12369	4	1	-5	$4 - \lambda(-5)$	$= 4 + 5\lambda$
p_2	12569	7	3	-3	$7 - \lambda(-3)$	$= 7 + 3 \lambda$
p_3	12589	10	6	0	$10 - \lambda 0$	= 10
p_4	14569	10	5	-1	$10 - \lambda(-1)$	$= 10 + \lambda$
p_5	14589	13	8	2	$13 - \lambda(-1)$	$= 13 - 2\lambda$
p_6	14789	16	9	3	$16 - \lambda(3)$	$= 16 - 3\lambda$

p	$c(p) - \lambda(w(p) - 6)$
p_1	$= 4 + 5\lambda$
p_2	$= 7 + 3 \lambda$
p_3	= 10
p_4	$= 10 + \lambda$
p_5	$= 13 - 2\lambda$
<i>p</i> ₆	$= 16 - 3\lambda$

Thank you for your attention

Prof. Dr. Güvenç Şahin Sabancı University Orta Mahalle Üniversite Caddesi No:27 Tuzla 34956 İstanbul Turkey

guvencs@sabanciuniv.edu

myweb.sabanciuniv.edu/guvencs/